Echocardiographic Assessment of the Native Aortic Valve & Aortic Valve Replacement/Repair

Dr Adrian Chong FRACP, FASE, FCSANZ, MBBS (Hons I), BPharm Senior Staff Cardiologist Princess Alexandra and Mater Adult Hospitals, Brisbane Senior Lecturer University of Queensland

Echocardiographic Assessment

- 1. Aortic valves and functional aortic annulus
- 2. AS (Valvular)
- 3. AR
- 4. AVR (SAVR, TAVR)
- 5. Aortic valve repair

Native Aortic Valve

Morphology

Sievers & Schmidtke. A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg 2007;133:1226-1233. Berrebi A, et al. Systematic echocardiographic assessment of aortic regurgitation – what should the surgeon know for aortic valve repair. Ann Cardiothorac Surg 2019;8:331-341.

Morphology

Tricuspid

Quadricuspid

Thickening, calcification, mobility

Aortic Valve Complex ("Aortic Root"; Functional Aortic Annulus)

Piazza N, et al. Anatomy of the aortic valvar complex and its implications for transcatheter implantation of the aortic valve. Circ Cardiovasc Intervent 2008;1:74-81 Piazza N, et al. Patient selection for transcatheter aortic valve implantation: Patient risk profile and anatomical selection criteria. Arch Card Dis 2012;1-5:165-173 Leon MB, et al. Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the Valve Academic Research Consortium. Eur Heart J 2011;32:205–217.

Predictors of Complications

Complication	Predictor	Sinotubular
Paravalvular AR	 Severe LZ calcification LVOT non-tubularity and annular ellipticity 	Aorta Aorta "Surgical" annulus
Conduction disturbance	 LVOT and mitral annular calcification (Esp beneath the NCC *) Short membranous septum * 	Virtual aortic annulus
Coronary obstruction	 Low coronary height (<10mm) Small SOV (<30mm) 	Right branch IVS Anterior mitral leaflet
Aortic trauma	 Severe leaflet and STJ calcification 	Left branch (post)

Corrigan F, et al. Imaging for predicting, detecting, and managing complications after transcatheter aortic valve replacement. J Am Coll Cardiol Img 2019;12:904-920. Hahn RT, et al. Echocardiographic imaging for transcatheter aortic valve replacement. J Am Soc Echocardiogr 2018;31:405-433.

Sinning JM, et al. Evaluation and management of paravalvular aortic regurgitation after transcatheter aortic valve replacement. Am Coll Cardiol 2013;62:11–20.

Medical and interventional approaches to the management of patients with valvular AS depend on <u>accurate diagnosis</u> of the cause and <u>stage of the disease process</u> (severity)

Stages of alvular AS	

C: As	symptomatic severe AS				
C1	Asymptomatic severe AS	Severe leaflet calcification/fibrosis or congenital stenosis with severely reduce leaflet opening	 Aortic V_{max} ≥4 m/s or mean ΔP ≥40 mm Hg AVA typically is ≤1.0 cm² (or AVAi 0.6 cm²/m²) but not required to define severe AS Very severe AS is an aortic V_{max} ≥5 m/s or mean P ≥60 mm Hg 	 LV diastolic dysfunction Mild LV hypertrophy Normal LVEF 	 None Exercise testing is reasonable to confirm symptom status
C2	Asymptomatic severe AS with LY systolic dysfunction	V Severe leaflet calcification/fibrosis or congenital stenosis with severely reduce leaflet opening	 Aortic V_{max} ≥4 m/s or mean ΔP ≥40 mm Hg AVA typically ≤1.0 cm² (or AVAi 0.6 cm²/m²) but not required to define severe AS 	LVEF <50%	None
D: Sy	mptomatic severe AS				
D1	Symptomatic severe high- gradient AS	Severe leaflet calcification/fibrosis or congenital stenosis with severely reduce leaflet opening	 Aortic V_{max} ≥4 m/s or mean ΔP ≥40 mm Hg AVA typically ≤1.0 cm² (or AVAi ≤0.6 cm²/m²) but may be larger with mixed AS/AR 	 LV diastolic dysfunction LV hypertrophy Pulmonary hypertension may be present 	 Exertional dys- pnea, decreased exercise toler- ance, or HF Exertional angina Exertional syn- cope or presyncope
D2	Symptomatic severe low-flow, low-gradient AS with reduce LVEF	Severe leaflet calcification/fibrosis with d severely reduced leaflet motion	 AVA ≤1.0 cm² with resting aortic V_{max} <4 m/s or mean ΔP <40 mm Hg Dobutamine stress echocardiography shows AVA <1.0 cm² with V_{max} ≥4 m/s at any flow rate 	 LV diastolic dysfunction LV hypertrophy LVEF <50% 	HFAnginaSyncope or presyncope
D3	Symptomatic severe low-gradier AS with normal LVEF or paradoxical low-flow severe AS	ntSevere leaflet calcification/fibrosis with severely reduced leaflet motion	 AVA ≤1.0 cm² (indexed AVA ≤0.6 cm²/m²) with an aortic V_{max} <4 m/s or mean ΔP <40 mm Hg AND Stroke volume index <35 mL/m² Measured when patient is normotensive (systolic blood pressure <140 mm Hg) 	 Increased LV relative wall thickness Small LV chamber with low stroke volume Restrictive diastolic filling LVEF ≥50% 	 HF Angina Syncope or presyncope

AR indicates aortic regurgitation; AS, aortic stenosis; AVA, aortic valve area circulation; AVAi, AVA indexed to body surface area; BAV, bicuspid aortic valve; ΔP, pressure gradient between the LV and aorta HF, heart failure; LV, left ventricular; LVEF, left ventricular ejection fraction; and V_{max}, maximum velocity.

АСС/АНА 2020

"Syndrome" of AS – Complex Anatomic Disease

Trileaflet aortic valve

Pathological processes occurring within the valve during aortic stenosis

Common etiologies:

- Calcific [Trileaflet (>75yoa) or bicuspid (<65yoa)]
- Rheumatic

Dweck MR, et al. Calcific aortic stenosis – a disease of the valve and myocardium. JACC 2012;60:1854-1863. Baumgartner H, et al. Recommendations on the echocardiographic assessment of aortic valve stenosis. JASE 2017;30:372-392.

2D Assessment

Maximal Aortic Cusp Separation (MACS by M-Mode or 2D):

- MACS <8mm = AVA <0.75cm²
- MACS >12mm = AVA >1.0cm²
- *But:*
 - Assumes perpendicular alignment
 - Does not consider asymmetric valve involvement, eccentric orifice, distorted leaflets

Ca²⁺:

- *Mild* (Few areas of dense echogenicity; Little acoustic shadowing)
- Moderate (Multiple large areas of dense echogenicity)
- **Severe** (Extensive thickening and increased echogenicity + Prominent acoustic shadowing

Primary Hemodynamic Parameters for Evaluation of AS

Primary Hemodynamic Parameters for Grading AS Severity

	Aortic Sclerosis	Mild AS	Moderate AS	Severe AS
Peak velocity (m/sec)	≤2.5	2.6 - 2.9	3.0 - 4.0	≥4.0
Mean gradient (mmHg)	_	<20	20 - 40	≥40
DSI	-	>0.50	0.25 - 0.50	<0.25
AVA (cm²)	_	>1.5	1.0 - 1.5	<1.0
AVA indexed for BSA (cm²/m²)	_	>0.85	0.60 - 0.85	<0.60

83yo Female; Ht 157cm; Wt 53kd; BSA 1.52cm²; BP 128/70mmHg

Sof

ACE

LVOT _d	2.1cm
LVOT VTI	17.5cm
AV v _{max}	5.0m/sec
AV Peak/Mean Gradients	101/64mmHg
AV VTI	137cm
DSI	0.13
AVA	0.44cm ²
AVA indexed for BSA	0.20cm ² /m ²

Severe Valvular (Calcific) AS Stage D1 European Heart Journal (2008) 29, 1043–1048 doi:10.1093/eurheartj/ehm543 CLINICAL RESEARCH Valvular heart disease

Inconsistencies of echocardiographic criteria for the grading of aortic valve stenosis

Jan Minners*, Martin Allgeier, Christa Gohlke-Baerwolf, Rolf-Peter Kienzle, Franz-Josef Neumann, and Nikolaus Jander

30% diagnosed with severe AS based on AVA (Gorlin) but not MG

25% diagnosed with severe AS based on AVA (Continuity) but not Vmax

Quadrants are based on current guidelines for severe AS

Discrepant Results

	easurement Errors	
•	LVOT _{Diameter} Poor Doppler alignment (No use of PEDOF)	 Commonly underestimated (Squared error) Underestimation of AV v_{max}, gradients & VTI
•	Over-tracing of continuous wave Doppler signal	 Overestimation of AV vmax, gradients & VTI
Pi	ressure recovery	 Overestimated pressure drop from LV to
•	Small aortic root or AscAo (≤3.0cm)	vena contracta vs actual net pressure from from LV to AscAo
Hi	igh-flow states	
•	Significant AR	 Increased transaortic volume (flow)
•	High output states	Dialysis, anemia, CLD, pregnancy etc
• Lo	High output states	 Dialysis, anemia, CLD, pregnancy etc
• <u>L</u> (High output states ow-flow states Significant MR	 Dialysis, anemia, CLD, pregnancy etc Low transaortic flow
• <i>L</i> (High output states Dw-flow states Significant MR Hypertension	 Dialysis, anemia, CLD, pregnancy etc Low transaortic flow May reduce stroke volume
• • •	High output states Dw-flow states Significant MR Hypertension LVEF<50%	 Dialysis, anemia, CLD, pregnancy etc Low transaortic flow May reduce stroke volume Classical LFLG AS (Stage D2)

St Elsewhere

83 yo lady Indication for TTE: Chest pain + SOB Height: 154cm, Weight: 63kg, BSA 1.61m² BP 126/62mmHg Rhythm: AF

Height 154 cm	Weight 63 kg	BSA 1	61 m²	BP		Page	5/6	
Parameter	Value	Mth	m1	m2	m3	m4	m5	
Doppler Measureme Aortic	nts							
LVOT Diam	1.8 cm	Av	1.8					
LVOT Trace								
LVOT Vmax	1.08 m/s	Av	1.07	1.10				
LVOT Vmean	0.79 m/s	Av	0.76	0.81				
LVOT maxPG	4.70 mm	Hg Av	4.61	4.80				
LVOT meanPG	2.73 mm	Hg Av	2.61	2.86				
LVOT Env.Ti	285 ms	Av	303	266				
LVOT VTI	22.4 cm	Av	23.1	21.6				
LVSV Dopp	56 ml		58	54				
LVSI Dopp	34.82 ml/	m2	36.05	33.59				
AV Trace								
AV Vmax	3.87 m/s	Av	3.60	3.52	3.77	4.19	3.97	
AV Vmean	2.81 m/s	Av	2.56	2.52	2.81	3.17	2.75	
AV maxPG	60.26 mm	Hg Av	51.89	49.43	57.00	70.09	63.03	

Height 154 cm	Weight 63 kg	BSA 1	.61 m²	BP		Page	6/6
Parameter	Value	Mth	m1	m2	m3	m4	m5
Doppler Measurem	ents						
Aortic							
AV Trace							
AV meanPG	35.66 mm	Hg Av	29.75	28.48	34.80	44.30	34.86
AV Env.Ti	297 ms	Av	307	299	277	281	303
AV VTI	83.5 cm	Av	78.5	75.5	77.9	89.1	83.4
AVA Vmax	0.7 cm2	2	0.7	0.8			
AVA (VTI)	0.7 cm2	2	0.7	0.7			
Tricuspid Valve							
TR Vmax							
TR Vmax	3.38 m/s	Av	3.11	3.65			
TR maxPG	46.01 mm	Hg Av	38.65	53.36			
Pulmonic							
PV Vmax							
PV Vmax	1.37 m/s	Av	1.37				
PV maxPG	7.49 mm	Hg Av	7.49				
			4				

AORTIC VALVE

Thickened leaflets with reduced leaflet excursion. Severe aortic stenosis with trivial regurgitation. LVOT diam: 1.8 cm; LVOT vel.: 1.1 m/s; LVOT VTI: 22 cm; AV vel.: 4.2 m/s; AV VTI: 96 cm; Peak gradient: 60 mmHg; Mean gradient: 36mmHg; Orifice area (continuity equation): 0.7 cm2; DSI: 0.23.

CONCLUSION:

... Severe aortic stenosis.

Common Source of Error – LVOT Diameter

		21 Oct, 20167 10:57:2 DS_Valve_0 - 100 %	fhickness u.40 mm Contrast	21 Oct, 2016 / 10:57:2 DS_Valve 0 - 100 %	Thickness 0.45 mm Contrast	21 Oct, 2016 / 10:57:2 DS_Valve 0 - 100 %	Thickness 0.45 mm Contrast DSCONTRAST:APPLIED
Annulus							SE:2175
Short axis	18.1 mm	FR		FR		RE	
Long axis	21.6 mm						17:26:18
Area	306.7 mm ²	Short-Axis = 18,1 mm				Short Axis = 22.3 mm	Short Avis = 18-5 mm
Perimeter	62.1 mm	Perimeter = 62.1 mm		O Rivus of	Valachus	Long Axis = 24.7 mm	Long Axis = 22.6 mm
Effective diameter based on area	19.8 mm	Ann	IIUS	2.500500	Valsawa	- J SINOUDURI	(100300) 4 EVOI
Effective diameter based on perimeter	19.8 mm	P 2 Det zu 6 Ju 5/ Z	uničkovsši u va form	P 21 Oct 2016 / 10/57/9	Thickness 3 00 mm	P. 21 Oct. 2016 / 10:57 2	Thickness 3.00 mm - 21 mm 2000 / mm 7 2 mm 80 mm 3 mm 40
(Long Axis + Short Axis) / 2	19.8 mm	DS_Valve 0 - 100 %	Contrast	DS_Valve_0 - 100 %	Contrast	DS_Valve 0 - 100 %	Contrast DS Valve 0 - 100 % Contrast
Sinus of Valsalva	k						
Short Axis	24.6 mm				100		
Long Axis	27.1 mm			400	100	100	And the second second second
(Long Axis + Short Axis) / 2	25.9 mm	R		AFR	and the second	AFR	A A A A A A A A A A A A A A A A A A A
Sinotubular Junctio	n	Chart Auto Arts T		100 A 400 A		- Contractions	
Short Axis	22.3 mm	Long Axis = 3053 mm		Distance: 12.50 mm	Annulus	Distance: 14.60 mm	Height: 18,03 mm
Long Axis	24.7 mm	5 Ascendir	tg Aorta	Distance to LMC	A'Ostial plane	Distance to RCA	Ostial plane Of Left Coronary Sinus Height
(Long Axis + Short Axis) / 2	23.5 mm	P	Thickness 2.00 mm	LF	Thickness 2.00 mm	LF	Thickness 0/32 mm
LVOT		DS_Valve 0_ 100 %	Contrast	DS_Valve_0 - 100 %	Contrast	DS_Valve_0 - 100 %	Contrast
Short Axis	16.5 mm	ALC: NO.	2000	States 1	10.00	11 - 12 - 23	
Long Axis	22.6 mm	Contract of the	100000		and the second	C.C.C.	
(Long Axis + Short Axis) / 2	19.6 mm		100 miles - 100 miles		2.455.55		
Ascending Aorta		A	100000.45	R		R	
Short Axis	29.9 mm		1.2.2. 2	542868BA			
Long Axis	30.3 mm	Height: 18.54 mm	and the second second	Height 19.17 mm	ALC: UNK	Angle: 52.4 deg	
(Long Axis + Short Axis) / 2	30.1 mm	Right Coronary	Sinus Haight	Non-Coronary	Sinus Haight	Annulus An	guiation

2D often underestimates the LVOTd (Ant-Post; Oval)

Error is <u>SQUARED</u> by continuity

⁷LVOTd_{Predicted} (mm) = 5.7*BSA + 12.1

Baumgartner H, et al. Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: A Focused Update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 2017;30:372-392.
 Baumgartner H, et al. Echocardiographic assessment of valve stenosis: EAE/ ASE recommendations for clinical practice. Eur J Echocardiogr 2009; 10:1-25.
 Otto CM, et al. Determination of the stenotic aortic valve area in adults using Doppler echocardiography. J Am Coll Cardiol 1986;7:509-17.
 Pibarot P, et al. Left Ventricular Outflow Tract Geometry and Dynamics in Aortic Stenosis: Implications for the Echocardiography effective orifice area and invasive aortic valve area. J Am Soc Echocardiogr 2015;28:1267-1269.
 LaBounty TM, et al. Recommendations for comprehensive intraporocedural echocardiographic imaging during TAVR. J Am Coll Cardiol Imaging 2015;8:261-287.
 Leye M, Brochet E, Lepage L, et al. Size-adjusted left ventricular outflow tract diameter reference values: a safeguard for the evaluation of the severity of aortic stenosis. J Am Soc Echocardiogr 2009;22:445-451

Source of Error - Overtracing

• LVOT VTI is measured by tracing the modal velocity (middle of the dense signal) for use in the continuity equation or calculation of SV

- Maximum velocity is measured at the outer edge of the dark signal
- Fine linear signals at the peak of the curve (transit-time effects) should <u>NOT BE</u> <u>INCLUDED</u>

≥3 beats averaged for patients in SR

≥5 consecutive beats averaged for irregular rhythms (Avoid post-extrasystolic beats)

*Average of velocities from the ONE window with the highest velocities

Re-traced and Re-calculated

LVOT peak vel. 0.98m/sec
LVOT VTI 21cm

- DSI 0.29
- LVOTd_{Predicted} = 2.13cm
- $\cdot \quad AVA = 1.03 cm^2$
- $AVAi_{BSA} = 0.64 cm^2/m^2$

62 yo male Indication for TTE: Previous aortic sclerosis (2013); Now dizzy and SOBOE; TTE in Perth showed severe AS

86 HR

Octave Octave Freq.: 1.7 MHz/3.3 MHz FPS: 48.6/48.6 Gain: -7.0 dB Scale: 4.44 kHz Freq.: 2.2 MHz SV: 1.1 mm LVRej: 19 cm/s

Octave Freq.: 1.7 MHz/3.3 MHz FPS: 31.3/

.78

85 HR

85 HR

Biplane Simpson's: LVEDV 244mL LVESV 118mL **LVEF 52%** {BSA 2.1m²}

78 HR

Octave Freq.: 1.7 MHz/3.3 MHz FPS: 76.2/

80 HR

.66

-66

76 HR

V

- LVOT peak vel. 1.2m/sec
- LVOT VTI 27cm
- (LVOTd 2.5cm)
- AV peak vel. 4.8m/sec
- AV mean vel. 3.4m/sec
- AV VTI 105cm
- AV peak/mean gradient 92/51mmHg
- DSI 0.26
- AVA 1.26cm² (AVAi 0.63cm²/m²)

Rapid Pressure Recovery

- [1-2] Flow convergence through the stenotic AV to vena contracta -> Converts PE to KE
- [3] Streamlines then diverge and slow, there is reconversion of KE to PE:

"Recovery" of a proportion of the pressure loss

- <u>Doppler method</u> = Measures peak flow velocity at the vena contracta (i.e. EOA)
- <u>Recovered pressure</u> reflects the true load (pressure burden & wall stress) on the LV

Most useful in moderate AS and small aortic roots (STJ <3.0cm OR EOA : AscAo diameter ≥0.20cm)

Gjertsson P, Caidahl K, Svensson G, et al. Patients with aortic stenosis and high Doppler gradients. Am J Cardiol 2001;88:139-144.

Normal gradual pressure recovery:

Pigtail catheter pulled back from just beyond the aortic valve to the arch

 AVA_{PR} indexed for BSA = Energy Loss Index (ELI)

Aorta diameter ≥3.0*cm* = *Minimal pressure recovery*

- Niederberger J, Schima H, Maurer G, et al. Importance of pressure recovery for the assessment of aortic stenosis by Doppler ultrasound. Role of aortic size, aortic valve area, and direction of the stenotic jet in vitro. Circulation 1996;94:1934-1940.
- Baumgartner H, Stefanelli T, Niederberger J, et al. "Overestimation" of catheter gradients by Doppler ultrasound in patients with aortic stenosis: a predictable manifestation of pressure recovery. J Am Coll Cardiol 1999;33:1655-1661.
- Garcia D, Pibarot P, Dumesnil JG, et al. Assessment of aortic valve stenosis severity: a new index based on the energy loss concept. Circulation 2000;101:765-771.

- LVOT peak vel. 1.2m/sec
- LVOT VTI 27cm
- (LVOTd 2.5cm)
- AV peak vel. 4.8m/sec
- AV mean vel. 3.4m/sec
- AV VTI 105cm
- AV peak/mean gradient 92/51mmHg
- DSI 0.26
- AVA 1.26cm² (AVAi 0.63cm²/m²)

STJ (cm)	2.8
PG (mmHg)	62
MG (mmHg)	36
AVA (cm²)	1.59
AVAi (cm²/m²)	0.76

Moderate AS

High output state

LVOT peak vel. 1.2m/sec LVOT VTI 27cm (LVOTd 2.5cm) SV (Doppler) 132mL SVi 63mL/m2

Biplane Simpson's: LVEDV 244mL LVESV 118mL SV (2D) 126mL CO ~10-11L/min

Shape of the Doppler signal ("Late peaking" = Increasing severity)

Ratio of Acceleration Time to Ejection Time for Assessing Aortic Stenosis Severity Gamaza-Chulian S, et al. Echocardiography 2015;32:1754–1761

• AT/ET discriminates symptomatic from asymptomatic patients (AUC ROC 0.91)

- Cutoff AT/ET >0.35
 - Sn 77% and Sp 100%
 - Higher NT-proBNP levels (9885±3111 vs 2600±1175, *P*<0.001)

88yo male SOB

ACE FPS: 36/36 f: 2.0 MHz/2.0 MHz D: 16.0 cm

Soft

ACE FPS: 40/40 f: 2.0 MHz/2.0 MHz D: 14.9 cm

10-

Soft

81 HR

Soft

Soft

75 HR

LVEDVi 106mL/m² LVEF ~25%

LVOT peak vel. 0.9m/s LVOT VTI 18cm (LVOT_D 2.2cm)

AV peak vel. 3.6m/sec AV VTI 91cm AV peak gradient 52mmHg AV mean gradient 35mmHg DSI 0.20 AVA 0.75cm² SV 68mL

LFLG AS with reduced LVEF

(Classical LFLG AS)

True Severe AS

Severe valvular stenosis Wall stress exceeds compensatory hypertrophy Afterload mismatch Secondary LV systolic dysfunction

Pseudo-Severe AS

Moderate (or less) valvular stenosis Underlying primary contractile dysfunction Inadequate valve opening forces Reduced cusp mobility and "apparent" stenosis

BOTH are low-flow states resulting in low pressure gradients but calculated EOA in the severe range

Hemodynamic Definition:

AVA <1.0cm² Mean gradient <40mmHg LVEF <50% (<40% 2009) SVi <35mL/m² (2017)

1. Nishimura RA, et al. JACC 2014;63:357-185.

2. Baumgartner H, et al. JASE 2017;30:372-392.

Low-Dose Dobutamine Stress Echocardiography (C-LFLG AS)

Protocol for assessment of AS severity:

Starting dose 2.5-5.0mcg/kg/min Incremental increases q3-5minutes Maximum dose of 20mcg/kg/min

End-points:

- I. Positive result
- 2. HR increases ≥10-20bpm over baseline or ≥100bpm
- 3. Symptomatic, hypotension, arrhythmias

	True Severe AS	Pseudo-Severe AS	Indeterminate
AVA	Incr by <0.2cm ² Remains <1.0cm ²	Incr by ≥0.3cm ² Incr to ≥1.0cm ²	No change
Mean Gradient	Incr to (>30)-40mmHg (Peak vel. ≥4.0m/sec)	No change	No change
Incr SV >20% (FR { <i>CR</i> } +)	Yes	Yes	No

Paradoxical LFLG AS (Preserved EF):

European Heart Journal (2010) **31**, 281–289 doi:10.1093/eurheartj/ehp361 REVIEW

Paradoxical low flow and/or low gradient severe aortic stenosis despite preserved left ventricular ejection fraction: implications for diagnosis and treatment

Jean G. Dumesnil^{1*}, Philippe Pibarot^{1*}, and Blase Carabello²

- 1. AVA <1.0cm²; Indexed AVA <0.6cm²/m²
- 2. LVEF >50%
- 3. SVi <35mL/m²

4 Other features:

- # Higher valvulo-arterial impedence
 - # { Z_{Va} (mmHg/mL/m²) = (SBP + Mean gradient) / SVi }
- # Smaller and thicker ventricles (LVEDd<50mm; LVEDVi <60mL/m²; RWT>0.45)
- # Lower mid-wall radius shortening (%)

Paradoxical Low-Flow, Low-Gradient Severe Aortic Stenosis Despite Preserved Ejection Fraction Is Associated With Higher Afterload and Reduced Survival

Zeineb Hachicha, MD; Jean G. Dumesnil, MD; Peter Bogaty, MD; Philippe Pibarot, DVM, PhD

* 30-40% have pseudo-severe AS

ACC D3

Criteria that increase the likelihood of severe AS in patients with AVA <1.0cm ² and MG <40mmHg in the presence of preserved EF (P-LFLG AS)			
Clinical	 Physical examination consistent with severe AS Typical symptoms without other explanation Elderly (>70yoa) 		
Qualitative data	1. LVH 2. Reduced longitudinal function without other explanation		
Quantitative data	 Mean gradient 30-40mmHg SVi <35mL/m² confirmed by other techniques (LVOTd measured by 3D TEE or MSCT; cMRI; Invasive data) 		
 Caveats to AVC by CT: Anatomic severity (vs hemodynamic) Does not quantify leaflet fibrosis (underestimates severity in young and BAV) Pibarot P. JASE Oct 2016 	 ACC 2020 VHD Guidelines - CT-AVC thresholds for diagnosis of severe AS: 2000 in men 1300 in women 		

Baumgartner H, et al. Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: A Focused Update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 2017;30:372-392.

S	tage Definition	Valve Anatomy	Valve Hemodynamics	Hemodynamic Consequences	Symptoms
Á.	At risk of AR	 BAV (or other congenital valve anomaly) 	AR severity: none or trace	None	None
		 Aortic valve sclerosis Diseases of the aortic sinuses or ascending aorta 			
		 History of rheumatic fever or known rheumatic heart disease IE 			
B	Progressive AR	 Mild to moderate calcification of a trileaflet valve BAV (or other congenital valve anomaly) Dilated aortic sinuses Rheumatic valve changes Previous IE 	 Mild AR: Jet width <25% of LVOT Vena contracta <0.3 cm Regurgitant volume <30 mL/beat Regurgitant fraction <30% ERO <0.10 cm² Angiography grade 1 Moderate AR: Jet width 25%-64% of LVOT Vena contracta 0.3-0.6 cm Regurgitant fraction 30% to 49% ERO 0.10-0.29 cm² Angiography grade 2 	 Normal LV systolic function Normal LV volume or mild LV dilation 	None
Stages of Chronic AR	Asymptomatic severe AR	 Calcific aortic valve disease Bicuspid valve (or other congenital abnormality) Dilated aortic sinuses or ascending aorta Rheumatic valve changes IE with abnormal leaflet closure or perforation 	 Severe AR: Jet width ≥65% of LVOT Vena contracta >0.6 cm Holodiastolic flow reversal in the proximal abdominal aorta Regurgitant volume ≥60 mL/beat Regurgitant fraction ≥50% ERO ≥0.3 cm² Angiography grade 3 to 4 In addition, diagnosis of chronic severe AR requires evidence of LV dilation 	 C1: Normal LVEF (>55%) and mild to moderate LV dilation (LVESD <50 mm) C2: Abnormal LV systolic function with depressed LVEF (≤55%) or severe LV dilation (LVESD >50 mm or indexed LVESD >25 mm/m²) 	None; exercise testing is reasonable to confirm symptom status
	Symptomatic severe AR	 Calcific valve disease Bicuspid valve (or other congenital abnormality) Dilated aortic sinuses or ascending aorta Rheumatic valve changes Previous IE with abnormal leaflet closure or perforation 	 Severe AR: Doppler jet width ≥65% of LVOT Vena contracta >0.6 cm Holodiastolic flow reversal in the proximal abdominal aorta Regurgitant volume ≥60 mL/beat Regurgitant fraction ≥50% ERO ≥0.3 cm² Angiography grade 3 to 4 In addition, diagnosis of chronic severe AR requires evidence of LV dilation 	 Symptomatic severe AR may occur with normal systolic function (LVEF >55%), mild to moderate LV dysfunction (LVEF 40% to 55%), or severe LV dysfunction (LVEF <40%) Moderate to severe LV dilation is present 	Exertional dyspnea or angina or more severe HF symptoms

AR indicates aortic regurgitation; BAV, bicuspid aortic valve; ERO, effective regurgitant orifice; HF, heart failure; IE, infective endocarditis; LV, left ventricular; LVEF, left ventricular ejection fraction; LVESD, left ventricular end-systolic dimension; and LVOT, left ventricular outflow tract.

ACC/AHA 2020

Chronic Severe AR Echo Assessment

Define:

- 1. Etiology & Mechanism
- 2. Morphology
- 3. Severity

4. Impact of regurgitant lesion on cardiac remodeling

Zoghbi WA, et al. Recommendations for noninvasive evaluation of native valvular regurgitation. JASE 2017;30:303-371.

Mechanisms & Etiology of AR

Mechanism	Etiology
Congenital <i>leaflet</i> abnormalities	 Unicuspid, bicuspid, quadricuspid valves VSD
Acquired <i>leaflet</i> abnormalities	 Senile calcification IE Rheumatic disease Radiation- or toxin-induced valvulopathy (Anorectic drugs, carcinoid)
Congenital/genetic <i>aortic root</i> abnormalities	 Annuloaortic ectasia CTD (Loeys Deitz, Ehlers-Danlos, Marfan, Osteogenesis imperfecta)
Acquired <i>aortic root</i> abnormalities	 Idiopathic root dilatation Systemic hypertension Autoimmune disease (SLE, Ankylosing spondylitis, Reiter's) Aortitis (Syphilitic, Takayasu's) Aortic dissection Trauma

Classification of AR Morphology

Aortic Regurgitation

Functional aortic annulus

Aortic leaflets

Type 1a = Sinotubular junction enlargement and dilatation of the ascending aorta Type 1b = Dilatation of the sinuses of Valsalva and sinotubular junction (BAV, Marfan, E-D) Type 1c =Dilatation of the ventriculoarterial junction ("Annulus")

Type 1d = Cusp perforation or fenestration without a primary functional aortic annular lesion Zoghbi WA, et al. Recommendations for noninvasive evaluation of native valvular regurgitation. JASE 2017;30:303-371.

TYPE IB

Trans-sinus diameter 4.9cm; STJ diameter 3.7cm; AscAo diameter 4.0cm

TYPE IC

"Annular" dilatation; Flail MV (Osteogenesis imperfecta)

TYPE ID

Perforated right coronary cusp

TYPE II – CUSP PROLAPSE (RCC)

TYPE III - RHD

Parameter	Mild AR	Moderate AR	Severe AR
<section-header></section-header>	Normal or abnormal	Normal or abnormal	Abnormal/flail or wide coaptation defect*
• LV size	Normal	Normal or dilated	Usually dilated*
QUALITATIVE			
<section-header></section-header>	None or very small	Intermediate	Large*
 Jet width in LVOT (CFD) 	Small in central jets	Intermediate	Large in central jets; Variable in eccentric jets*

Parameter	Mild AR	Moderate AR	Severe AR
QUALITATIVE Doppler			
 Jet density and deceleration rate (PHT msec) (CWD) 	Incomplete or faint	Dense	Dense
AR maxPG 45.73 mmHg AR PHT 68 ms AR Dec Slope 14.35 m/s2	>500msec	200-500msec	<200msec*
<section-header><figure></figure></section-header>	Brief, early diastolic reversal	Present in descending thoracic aorta (Holodiastolic)	Present in abdominal aorta**

Parameter	Mild AR	Moderate AR	Severe AR
SEMIQUANTITATIVE Parameters			
 Vena contracta width (cm) 	<0.3cm	0.3-0.6cm	>0.6cm*
Notes Notes			
• Jet width/LVOT width for <u>central</u>	<25%	24-45%	≥65%*
jets (%)		46-64%	
Provide a state of the state of			
 Jet CSA/LVOT CSA for <u>central</u> 	<5%	5-20%	≥60%
		21-59%	

Parameter	Mild AR	Moderate AR	Severe AR
QUANTITATIVE Parameters			
 Regurgitant volume (RVol, mL/beat) 	<30mL	30 - 44mL	≥60mL _{*cMRI}
RVol = SV _{RegValv} – SV _{CompValv}		45 - 59mL	
$Rvol = SV_{LVOT} - SV_{MV}$			
Image: Work and the second s			
 Regurgitant fraction (RF, %) 	<30%	30 - 30%	>50%
RF = RVol / SV _{RegValv}	~30 70	40 - 49%	∠JU /0 ∗ _{cMRI}
• EROA (cm ²) EROA = $2\pi r^2 \times \text{Vel}_a / \text{Vel}_{AR}$ Rvol (mL) = EROA $\times \text{VTl}_{AR}$	<0.10cm ²	0.10 - 0.19cm ² 0.20 - 0.29cm ²	≥0.30cm²
Flow Convergence Method $V \rightarrow V^{PISA radius (r)}$ $V \rightarrow V^{PISA radius (r)$			

Acute Severe AR

59 yo female Indication for TTE: Aortic valve endocarditis + NSTEMI

5

10

15

HR

HR

- **Increased LVOT VTI** 1. (Stroke volume)
- **Raised left-sided** 2. filling pressures
- **Short AR PHT** 3.

128

1.5

37 m

TOE

Type A Dissection:

Aortic root/annular dilatation Asymmetrical cusp coaptation due to pressure from false lumen Flail aortic cusp secondary to annular disruption Prolapse of intimal flap through the aortic valve

Hamirani YS et al. Acute aortic regurgitation. Circulation 2012;126:1121-1126.

Zoghbi WA, et al. Recommendations for noninvasive evaluation of native valvular regurgitation. JASE 2017;30:303-371.

Surgical Aortic Valve Replacements (SAVR)

Table I Types of prosthetic heart valves

Biological	
Stented	
Porcine bioprosthesis	
Pericardial bioprosthesis	
Stentless	
Porcine bioprosthesis	
Pericardial bioprosthesis	
Aortic homograft	
Pulmonary autograft (Ross procedure)	
Sutureless	
Transcatheter	
Mechanical	
Bileaflet	
Single tilting disk	
Caged ball	

Table 3 Designs and models of mechanical replacement heart valve

Bileaflet mechanical replacement valves

- St Jude Medical: standard, HP, Masters, and Regent
- Carbomedics: standard, reduced cuff. Optiform, Orbis, and supra-annular (Top Hat) Carboseal includes a woven aortic graft
- Edwards Tekna
- Sorin Bicarbon
- Edwards Mira
- ATS
- On-X

lyros

Medtronic Advantage

- Tilting disk replacement valves
- Bjork-Shiley monostrut^a
- Sorin Monoleaflet Allcarbon
- Medtronic-Hall
- Omnicarbon
- Ultracor Caged ball
- Starr-Edwards
- Smeloff-Cutter

Prosthetic Valves (Surgical)

Table 2 Designs and models of biological replacement heart valve

Stented porcine replacement valve

- Hancock standard and Hancock II
- Medtronic Mosaic^a
- Carpentier-Edwards standard and supra-annular
- St Jude Medical Biocor, Bioimplant, Epic
- AorTech Aspire
- Labcor
- Carbomedics Synergy

Stentless valve Porcine

- St Jude Medical Toronto^a
- Medtronic Freestyle
- Cryolife-O'Brien^a
- Cryolife-Ross Stentless porcine pulmonary
- Edwards Prima Plus
- AorTech Aspire
- St Jude Biocor
- Labcor
- St Jude Quattro stentless mitral
- Shelhigh Skeletorized Super-Stentless aortic porcine and
 - pulmonic
- Medtronic-Venpro Contegra pulmonary valve conduit

Stented pericardial replacement valve

- Carpentier-Edwards Perimount
- Carpentier Edwards Magna
- Mitroflow Synergy ٠
- St Jude Biocor pericardia
- St Jude Trifecta
- Labcor pericardial
- Sorin Pericarbon MORE^a

Stentless pericardial

- Sorin Pericarbon
- 3F-SAVR
- Freedom Solo
- Perceval S (Sorin)
- · Edwards Intuity (Edwards Lifesciences)
- 3F Enable (ATS Medical)
- Trilogy (Arbor Surgical Technologies)

- Zoghbi WA, et al. Recommendations for evaluation of prosthetic valves with echocardiography and Doppler ultrasound. JASE 2009:22:975-1014.
- Lancellotti P, et al. Recommendations for the imaging assessment of prosthetic heart valves. Eur Heart J 2016.

- - Sutureless

Complications Post-Valve Replacement Surgery

Complication	Definition	Examples or notes
Structural valve deterioration	Deterioration or dysfunction of the operated valve caused by changes intrinsic to the valve	 (1) Mechanical valve—wear, fracture, poppet escape (2) Biological valve—calcification, leaflet tear, stent creep (3) Both—disruption of components of a prosthetic valve
Non-structural dysfunction	Any abnormality not intrinsic to the valve that results in stenosis or regurgitation of the valve or haemolysis	 Entrapment by pannus, tissue, or suture Paravalvular leak Inappropriate sizing or positioning Residual leak or obstruction after valve implantation Clinically important intravascular haemolysis Dilatation of aorta or aortic annulus causing aortic regurgitation (for stentless valves)
Valve thrombosis	Any thrombosis not caused by infection that occludes part of the blood flow path, interferes with valve function, or is sufficiently large to warrant treatment	
Embolism	An embolic event that occurs in the absence of infection after the immediate perioperative period	 Stroke (>72 h neurological deficit) or non-specific symptoms with brain imaging demonstrating an acute ischaemic event TIA (fully reversible symptoms of short duration with no abnormality on brain imaging) Non-cerebral embolic event (not perioperative myocardial infarct)
Bleeding event	Any episode of major internal or external bleeding that causes death, hospitalization, permanent injury, or blood transfusion	Exclude bleeding associated with major trauma or an operation. Include major unexpected bleeding associated with minor trauma.
Endocarditis	Proved infection of the replacement heart valve	 Proof by: (1) Reoperation with evidence of abscess or other local complication (2) Autopsy evidence of abscess, pus, or vegetation (3) Duke criteria positive

Comprehensive Assessment of Prosthetic Aortic Valve Function		
	Parameters	
Clinical information	 Date of valve replacement 	
	 Type and size of prosthesis 	
	 Patient height, weight, BSA 	
	 Symptoms, BP, HR 	
2D imaging	 Motion of cusps, leaflets or occluders 	
	 Calcification or abnormal echodensities on 	
	the prosthesis components	
	 Valve sewing ring integrity and motion 	
	("Rocking")	

Comprehensive Assessment of Prosthetic Valve Function

	Parameters		
Doppler assessment	Spectral Doppler		
	Peak velocity		
	 Peak/mean gradients 		
	 DVI (VTI ratio aka DSI or DPI) 		
	• EOA (AVA)		
	 Flow dynamics (Acceleration time; Ejection time) 		
	Colour Doppler – Aortic Regurgitation		
	 Physiologic vs Pathologic 		
	Intravalvular vs Paravalvular		
V o v V	ο + DVI 0.29 + 1 (V07 Dian 2.5 cm		

AT <80msec AT : ET ratio <0.35

Comprehensive Assessment of Prosthetic Valve Function		
	Parameters	
Other imaging data	 LV/RV size, function, hypertrophy LA/RA size Co-existent valvular disease {RVSP} PASP 	
Previous post-op echo assessments	 Comparison with baseline parameters if suspected prosthetic valvular dysfunction 	

Echo Appearance of SAVRs - Bioprosthetic

Echo Appearance of SAVRs – Mechanical (1)

EchoPAH S5-1 40 Hz HD Zoom PLAX

2D HGen Gn 40 C 52 5/2/0 75 mm/s

EchoPAH S5-1 21 Hz HD Zoom

2D HGen Gn 26 C 52 5/2/0 75 mm/s

<u>Color</u> 2.5 MHz Gn 66 4/5/0 Fltr High

Echo Appearance of AVRs – Mechanical (2)

Cinefluoroscopy

- Indicated in abnormally increased gradients
- Occluder mobility, valvular ring motion
- Rocking = Extensive (40%) valve dehiscence

Cardiac CT (4D)

- Alternative to fluoroscopy for opening/closing angles
- Valvular mobility, integrity, and paravalvular pathology
- Bioprosthetic leaflet thickening, calcification or thrombus; AVA by planimetry
- Thrombus vs pannus on mechanical valves

Aortic Prosthetic Valve Obstruction

	Normal	Possible Obstruction	Significant Obstruction
QUALITATIVE			
 Valve structure/motion 	Normal	Often abnormal	Abnormal
CW Doppler envelope	Triangular; Earl	Triangular to	Rounded;
	peak	intermediate	Symmetrical
SEMI-QUANTITATIVE			
 Acceleration time (AT) 	<80msec	80-100msec	>100msec
• AT : Ejection time (ET)	<0.32	0.32-0.37	>0.37
ratio			
QUANTITATIVE			
• Peak vel.	<3.0m/sec	3.0 - 3.9m/sec	≥4.0m/sec
Mean gradient	<20mmHg	20 - 34mmHg	≥35mmHg
 Increase in mean gradient during f/up 	<10mmHg	10 - 19mmHg	≥20mmHg
• EOA	>1.1cm ²	0.8 – 1.1cm ²	<0.8cm ²
 Measured EOA vs normal (reference) value 	Reference +/-1SD	<reference -="" 1sd<="" td=""><td><reference -="" 2sd<="" td=""></reference></td></reference>	<reference -="" 2sd<="" td=""></reference>
 Reference EOA – measured EOA 	<0.25cm ²	0.25 – 0.35cm ²	>0.35cm ²
• DVI	≥0.35	0.25 – 0.34	<0.25

22yo female Chest pain; Hypotension; Shocked AVR; Subtherapeutic INR (Non-compliant)

2D

m

n 50

50

50

Severe LV dilatation; LVEF ~30%

Structural Valve Dysfunction (SVD)

Severe BioAVR Stenosis & Mild-moderate AR

Aortic Prosthetic Valve Regurgitation

	Mild	Moderate	Severe
QUALITATIVE			
• Valve structure/motion	Usually normal	Usually abnormal	Abnormal
• AR jet width (Central AR)	Small (<25%)	Intermediate	>65% LVOT width
• AR CW signal density	Incomplete; Faint	Dense	Dense
 Diastolic flow reversal in descending aorta 	Brief; Early diastole	Descending thoracic aorta; Holodiastolic	Abdominal aorta
• LV size	Normal	Normal/Mildly dilated	Dilated
SEMI-QUANTITATIVE			
Pressure half-time	>500msec	200-500msec	<200msec
 Circumferential extent of <u>PARAVALVULAR</u> AR 	<10%	10-29%	≥30%
 Vena contracta 	<0.3cm	0.3 - 0.6cm	>0.6cm
QUANTITATIVE			
• EROA	<0.10cm ²	0.10 - 0.29cm ²	≥0.30cm2
RVolume	<30mL	30 - 59mL	≥60mL
RFraction	<30%	30 - 50%	>50%

Bioprosthetic AVR – Paravalvular AR

Severe anterior paravalvular AR

Mechanical AVR – Paravalvular AR

21mm SJM

M4 FR 45Hz B.3cm xPiane 83% 63% 63% 63% 48dB P Off Res P I A Res Res

Mild-moderate posteromedial paravalvular AR

"Rocking" AVR and Severe Paravalvular AR

58yo female

Worsening SOB and LVF 21mm Magna Ease AVR (2009) for IE B/G: IVDU, HCV, Wegener's; BSA 1.82m²

TTE 2014

Pressure recovered PG/MG 109/72mmHg DPI 0.16; EOA 0.6cm² AT 126msec; AT 318msec (AT : ET ~0.40)

Intra-op TEE

Day 10 post re-do AVR (21mm St Jude Medical Regent)

87 HD

88 HR

NORMAL RANGES (ST JUDE MEDICAL REGENT 21MM) Peak gradient: 15.6+/-9.4mmHg Mean gradient: 8.0+/-4.8mmHg EOA: 2.0+/-0.7cm²

8 weeks post re-do AVR (21mm St Jude Medical Regent)

Re-admission with ongoing SOB and "fluid overload"

LVOT diameter 2.1cm; Sinotubular junction diameter 2.8cm; BSA 1.82m²

TTE REPORT:

- 1. Normal LV size and LVEF >60%
- 2. Normal RV size and systolic function
- 3. Well-seated mechanical AVR; Trivial intravalvular AR
 - Peak vel. 4.8m/sec; PG/MG 94/56mmHg; DSI 0.41; EOA 1.4cm²
 - Pressure recovered: PG/MG 61/39mmHg, EOA 1.8cm² (~0.99cm²/m²)
 - AT 79msec; ET 239msec; AT : ET 0.33
- 4. RVSP 35mmHg

NOT prosthetic AVR stenosis DDx – PPM or high flow state
High Transvalvular Aortic Prosthetic Gradients

RHC 18.11.2014:

- RA: a wave 17, v wave 17, mean 12
- RV: 44/20
- PA: 35/13, mean 23
- PCWP: a wave 21, v wave 29, mean 19
- Transpulmonary gradient: 4
- Ao: 90/39, mean 57
- SVR 3.9WU
- PVR 0.3WU
- CO (Thermo): 11.7L/min

Conclusion:

- Borderline mean PA pressure with very low transpulmonary gradient (4mmHg), significantly high cardiac output, markedly reduced PVR
- 2. Findings likely supportive of hepatopulmonary syndrome with known liver cirrhosis secondary to HCV

Patient-Prosthesis Mismatch

 EOA of a normally functioning prosthesis is too small in relation to the patient's body size and cardiac output requirements, resulting in abnormally high post-operative gradients

Imaging criteria for PPM						
AVR	Mild PPM	Moderate PPM	Severe PPM			
Indexed EOA (Projected or measured)						
 BMI <30kg/m² BMI ≥30kg/m² 	>0.85cm ² /m ²	0.66-0.85cm ² /m ²	≤0.65cm²/m² ≤0.55cm²/m²			
	>0.70cm²/m²	0.56-0.70 cm ² /m ²				
Measured EOA vs normal reference value	Reference +/- 1SD	Reference +/- 1SD	Reference +/- 1SD			
<i>Difference (Reference EOA – measured EOA)</i>	<0.25cm ²	<0.25cm ²	<0.25cm ²			
Valve structure and motion	Normal	Normal	Normal			

- Worse functional class, exercise capacity, QOL, increased cardiac events and lower survival
 - Worse hemodynamics, slower/incomplete regression of LVH, pulmonary hypertension
 - Faster degeneration of bioprosthetic AVRs

Transcatheter Aortic Valve Replacements (TAVR)

"Buffet" of THVs

Rotman OM, et al. Principles of TAVR valve design, modelling and testing. Expert Review of Medical Devices 2018;15:771-791.

Portico (Abbott)

Portico THV:

1. Nitinol self-expanding frame

2. Bovine pericardial leaflets

3. Porcine pericardial sealing cuff

Table 1. Portico Valve Dimensions (mm)						
Valve Size	А	В	С	D	E	F
23	23	39	7	9	26	50
25	25	41	7	9	28	53
27	27	42	8	10	28	49
29	29	44	8	10	29	50

Table 2. Portico Valve Sizing								
Valve Size (mm)	Annulus Range (mm)	Area (mm ²)	Perimeter (mm)	Ascending Aorta Diameter (mm)	Sinus of Valsalva Width (mm)	Sinus of Valsalva Height (mm)	Landing Zone (mm)	Vascular Access Diameter (mm)
23	19–21	277-346	60–66	26-36	≥27	≥15	1–9	≥ 6
25	21-23	338-415	66–73	28-38	≥27	≥15	1–9	≥ 6
27	23-25	405-491	72-79	30-40	≥ 29	≥15	1-10	≥ 6.5
29	25–27	479–573	79–85	32–42	≥31	≥15	1–10	≥6.5

Sondergaard L, et al. One-year Outcomes With a Self-Expanding, Repositionable Transcatheter Heart Valve in Severe Aortic Stenosis Patients: PORTICO-I. JACC 2018. Tzikas A, et al. Transcatheter Aortic Valve Replacement Using the Portico System: 10 Things to Remember. J Interven Cardiol 2016;29:523-529. Wilson AB, et al. Transcatheter aortic valve replacement with the St Jude Medical Portico Valve – First in human experience. J Am Coll Cardiol 2012;60:581-586.

Evolut R and Pro (Medtronic)

Evolut R System:

- 1. Nitinol self-expanding frame
- 2. Porcine pericardial leaflets
- 3. Supra-annular leaflet position
- 4. 34mm option

Evolut Pro System:

- 1. External porcine pericardial tissue wrap
- 2. Range 23-29mm
- *3. 2-4mm but <6mm below native annulus*

Valve Size Selection	E	Evolut [™] R Bioprosthesis		
Size	23 mm	26 mm	29 mm	34 mm
Annulus Diameter (A)	17*/18-20 mm	20-23 mm	23-26 mm	26-30 mm
Annulus Perimeter [‡]	53.4*/56.5-62.8 mm	62.8-72.3 mm	72.3-81.7 mm	81.7-94.2 mm
Sinus of Valsalva Diameter (Mean) (B)	≥25 mm	≥27 mm	≥29 mm	≥31 mm
Sinus of Valsalva Height (Mean) (C)	≥15 mm	≥15 mm	≥15 mm	≥16 mm

Medtronic.com

Mahtta D, et al. From CoreValve to Evolut Pro: Reviewing the Journey of Self-Expanding Transcatheter Aortic Valves. Cardiol There 2017;6:183-192. Hellhammer K, et al. The Latest Evolution of the Medtronic CoreValve System in the Era of Transcatheter Aortic Valve Replacement. JACC Cardiol Intv 2018;11:2314-2322

Sapien 3 (Edwards Lifesciences)

Valve Size	Height	
20 mm	15.5 mm	21m
23 mm	18 mm	24.5r
26 mm	20 mm	27m
29 mm	22.5 mm	31m

nmmmnmnm

Edwards SAPIEN 3 THV:

- 1. Cobalt-chromium alloy frame
- 2. Bovine pericardial leaflets
- 3. Polyethylene terephthalate (PET) inner (1/2) and outer skirts (1/3)
- *4. Shortens on deployment from LV side (Crimped:* Aortic edge covers native leaflets & below STJ); Final depth 1-2mm below native annulus

Transesophageal Echocardiogram (TEE*)	Native Annulus Area (mm²)	Area-derived diameter (mm)	THV Size
16-19 mm	273-345	18.6-21.0	20 mm
18-22 mm	338-430	20.7-23.4	23 mm
21-25 mm	430-546	23.4-26.4	26 mm
24-28 mm	540-683	26.2-29.5	29 mm

Different Echocardiographic Appearances

Post-deployment:

- Assessment of implanted THV
 - Stent position
 - Circular configuration or shape
 - Leaflet movement
 - Hemodynamic assessment

• Assessment of AR

- Intravalvular
- Paravalvular
- Check LV
 - Systolic function
 - RWMAs *<*Occluded coronary artery
- Check RV, MV, TV, RVSP
- Exclude aortic complication, perforation, pericardial effusion

Intra-procedural TOE

Mild-moderate posterior PARAVALVULAR AR Trivial-mild INTRAVALVULAR AR

Jayasuriya C, et al. Transcatheter aortic valve implantation in aortic stenosis: the role of echocardiography. J Am Soc Echocardiogr 2011;24:15-27.
 Zamorano JL, et al. EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for vavlular heart disease. J Am Soc Echocardiogr 2011;24:937-965.

3. Moss RR, et al. Role of echocardiography in percutaneous aortic valve implantation. J Am Coll Cardiol Img 2008;1:15-24.

4. Hahn R, et al. Recommendations for Comprehensive Intraprocedural Echocardiographic Imaging During TAVR. J Am Coll Cardiol Img 2015;8:261-287

Post-TAVR AR

Intravalvular (Central) AR:

- Guidewire-related
- Oversized prosthesis (Suboptimal stent expansion, impaired cusp mobility)
- Improper valve deployment or over-expansion
- Overhanging leaflet material prolapsing into the prosthesis
 - Interfering with diastolic flow pattern and THV leaflet coaptation
- Damage during THV pre-implantation preparation/crimping

Paravalvular leaks:

- Undersized prosthesis
- Inadequate prosthesis inflation & under-expansion
- Elliptical annulus geometry
- Asymmetric calcification of the native aortic valve
 - Calcific deposits preventing sealing within the annulus
- Low ("supra-skirt" PAR) or high implantation ("infra-skirt" PAR)

Rx: Post-dilatation Valve-in-valve

Rx: Post-dilation Valve-in-valve Device (plug) closure

Assessment of Paravalvular AR

- Multi-window and multi-parametric (Integrative) approach
 - Identify <u>location</u> (native commissures), <u>size</u>, and <u>mechanism</u> of the AR
 - POST-DILATATION considered if:
 - Clear mal-apposition ("free space") of the THV stent with native structures
 - Non-circular or irregular shape of the valve implying under-expansion
- CFD assessment on:
 - LAX and SAX views; Trans-gastric views
 - Acoustic shadowing of anterior jets on TOE and posterior jets on TTE
 - Small paravalvular jets may regress over 10-15minutes
 - Progressive nitinol frame expansion
 - Atypical jets: Multiple, eccentric, irregular, confined along the LVOT

Assessment of Paravalvular AR

• Severity based on:

- Total circumferential extent of the jet(s)**
- Width of jet(s) at their origin (Vena contracta width >6mm specific for severe AR)
- Number of jets
- Path of the jet(s) visible along the stent
- Presence of proximal flow convergence
 - 3D EROA

Jet length or area should NOT be used to grade severity, but rather to confirm the presence and location of AR

Assessment of Paravalvular AR

Mechanisms of paravalvular AR post-TAVR:

A - THV stent frame underexpansion

(Ca²⁺ in native cusp/annulus; Non-circular stent shape; "Space or gaps" between stent and native annulus)

B - Too high

C - Too low

D - Annulus-prosthesis size mismatch

Sinning JM, et al. Evaluation and management of paravalvular aortic regurgitation after transcatheter aortic valve replacement. J Am Coll Cardiol 2013;62:11-20.

Assessment of Paravalvular AR (Echo)

Circumferential extent of the paravalvular AR jet on the SAX view Recommended for semi-quantitative assessment

No. of minutes occupied by the AR jet

60 minutes

VARC2:

<10% suggests mild, 10-29% suggests moderate,

Size of the AR jet is dependent on the SAX scan plane of imaging:

- Too "high" = Underestimation
- Too "low" = Overestimation due to "splaying" downstream from the VC
- Ideal = Just below THV stent/skirt within the LVOT {Smallest VC}

Abdelghani M, et al. Echocardiographic and angiographic assessment of paravalvular regurgitation after TAVI: optimising inter-technique reproducibility. Eur Heart J 2016;852-860. Sinning JM, et al. Evaluation and management of paravalvular aortic regurgitation after transcatheter aortic valve replacement. J Am Coll Cardiol 2013;62:11-20. Pibarot P, et al. Assessment of paravalvular regurgitation following TAVR - A proposal of unifying grading scheme. J Am Coll Cardiol Img 2015;8:340-360. Kappetein AP, H et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. J Am Coll Cardiol 2012;60:1438–54.

Assessment of AR (Invasive Hemodynamic Ax)

AR Index = [(DBP - LVEDP) / SBP] x 100

**Cutoff value <25%* predictive of increased 1-year mortality after TAVR

NPV 95-100% for >Mild AR (When complements angio or echo Ax of paravalvular AR severity)

False +ves {*i.e.* <25% but no significant AR}:

Abnormal LV/Ao compliance {High LVEDP, increased aortic stiffness; (AR PHT*)}

* ~10 minutes after THV deployment [Avoid confounding by increased LVEDP post-rapid pacing and BAV] * HR 60-80bpm [Higher HR -> Shortened diastole -> Increased DBP -> False -ve ARI {>25}]

Zoghbi W et al. Guidelines for the evaluation of valvular regurgitation after percutaneous valve repair or replacement. J Am Soc Echocardiogr 2019 Abdelghani M, et al. Echocardiographic and angiographic assessment of paravalvular regurgitation after TAVI: optimising inter-technicue reproducibility. Eur Heart J 2016;852-860. Sinning JM, et al. Aortic regurgitation index defines severity of peri-prosthetic regurgitation and predicts outcome in patients after transcatheter aortic valve implantation. J Am Coll Cradle 2012;59:1134–41. Sinning JM, et al. Evaluation and management of paravalvular aortic regurgitation after transcatheter aortic valve replacement. J Am Coll Cardiol 2013;62:11-20. Pibarot P, et al. Assessment of paravalvular regurgitation following TAVR - A proposal of unifying grading scheme. J Am Coll Cardiol Img 2015;8:340-360.

Intra-procedural TOE (88yo F; 27mm Portico)

Intra-procedural TOE

Aortic Valve Repair

Repair-Oriented Functional Classification of AR

Al Class	Normal cusp r	Ty notion with FAA	Type II	Type III Cusp		
	la	lb	lc	ld	Prolapse	Restriction
Mechanism	E.					(J)
Repair Techniques (Primary)	STJ remodeling Ascending aortic graft	Aortic Valve sparing: Reimplantation or Remodeling with SCA	SCA	Patch Repair Autologous or bovine pericardium	Prolapse Repair Plication Triangular resection Free margin Resuspension Patch	Leaflet Repair Shaving Decalcificatio Patch
(Secondary)	SCA		STJ Annuloplasty	SCA	SCA	SCA
	Func	tional aortic ar	nulus		Aortic leaflet	S

la-c: Functional aortic annulus (AscAo+STJ; SOVA+STJ; VAJ); Id: Cusp perforation {Normal FAA}

II: Prolapse (Excessive cusp tissue or commissural disruption)

III: Leaflet restriction (BAV, degenerative, rheumatic)

*Single or multiple lesions

Boodhwani M, et al. Repair-oriented classification of aortic insufficiency: Impact on surgical techniques and clinical outcomes. J Thorac Cardiovasc Surg 2009;137:286-294.

Pre-Repair Assessment (TOE)

- 1. Aortic cusps (Number, thickening, calcification, coaptation, fenestrations, "heights")
- 2. AR (Mechanism, direction, *severity)
- 3. Aortic root measurements
- Annulus measurement Prosthesis sizing (Undersizing may cause cusp prolapse and induce AR) +/- need for SCA to stabilize the proximal FAA and increase leaflet coaptation surface

Geometric Ht (Leaflet length): Tri≥7mm, Bi≥20mm Coaptation Height: ≥4-5mm Effective Height: 9-10mm

- 1. H.J. Schafers, et al. A new approach to the assessment of aortic cusp geometry, Journal of Thoracic and Cardiovascular Surgery 2006;132:436-438.
- 2. Vojack J, et al. Aortic valve repair and valve sparing procedures. Cor Et Vasa 2017;59:e77-e84.
- 3. Vanoverschelde J, et al. The role of echocardiography in aortic valve repair. Ann Cardiothorac Surg 2013;2:65-72.
- 4. le Polain de Waroux JB, et al. Mechanisms of recurrent aortic regurgitation after aortic valve repair. Predictive value of intra-operative transesophageal echocardiography. JACC Cardiovasc Imaging 2009;2:931–9
- 5. Van Dyck MJ, et al. Transesophageal echocardiographic evaluation during aortic valve repair surgery. Anesth Analg 2010;111:59-70.
- 6. Berrebi A, et al. Systematic echocardiographic assessment of aortic regurgitation what should the surgeon know for aortic valve repair. Ann Cardiothorac Surg 2019;8:331-341.

Post-Repair Assessment

Satisfactory repair (Recurrence of AR):

- Level of aortic cusp coaptation 1.
- Above aortic annulus (Lower end higher than VAJ, upper end towards mid-height of SOV)
- Effective height ≥9mm
- No residual or new prolapse
- Presence of residual AR (None or <trivial 2. <u>central</u>)
- Coaptation length (≥4mm) 3.

Additional assessment:

- *Aortic annulus <25mm 1.
- 2. RWMAs (Coronary artery injury)
- Peak/mean AV gradients (Unsatisfactory if >30/15(10) mmHg; Risk of 3. AS and need for repeat surgery)

Berrebi A, et al. Systematic echocardiographic assessment of aortic regurgitation - what should the surgeon know for aortic valve repair. Ann Cardiothorac Surg 2019;8:331-341. 4.

AV Re-implantation

A: Coaptation \geq 2mm within the prosthesis B: Close to lower border of the Dacron graft C: Coaptation \geq 2mm below the prosthesis

Pethig K, et al. Aortic valve reimplantation in ascending aortic aneurysm: risk factors for erly valve failure. Ann Thorac Surg 2002;73:29-33.

le Polain de Waroux JB, et al. Mechanisms of recurrent aortic regurgitation after aortic valve repair. Predictive value of intra-operative transesophageal echocardiography. JACC Cardiovasc Imaging 2009;2:931–939. Van Dyck MJ, et al. Transesophageal echocardiographic evaluation during aortic valve repair surgery. Anesth Analg 2010;111:59-70. 3

Annulus: 2.3cm; Trans-sinus 4.5cm; STJ 4.5cm; AscAo 4.7cm

Intra-op TOE Post-Repair

TTE 12.2020 (8yrs Post-AV Repair)

Take Home Messages

- 1. Do not judge severity of a lesion based on a single parameter
- 2. Beware discrepant parameters in assessment of AS
 - Measurement errors
 - LFLG syndromes (True vs Pseudosevere)
- Beware severe acute regurgitant lesions (Clinical assessment + supportive echocardiographic findings)
- 4. Additional diagnostic benefit of other imaging modalities
 - CT AV Ca²⁺ in AS; Mechanical AVRs
 - *cMRI RVolume/RFraction in AR*

Thank You

